Hopf Algebras in Quantum Computation

نویسنده

  • Giovanni de Felice
چکیده

In this thesis, we use string diagrams to study the theory of Hopf algebras in the context of Categorical Quantum Mechanics. First, we treat the theory of representations of a Hopf algebra diagrammatically. The category of representations of a quasitriangular Hopf algebra Rep(H) is a braided tensor category and can be understood as a process theory of particles in Topological Quantum theory. We provide diagrammatic proofs of equivalences relating the Drinfeld center construction on Rep(H) to the category of Quantum double modules Rep(DH). We then use similar tools to generalize Kitaev’s lattice models for Topological Quantum computation and give a categorical perspective on Permutational Quantum computation. Finally, we discuss functorial semantics in the context of quantum computation, by constructing a braided language for stabilizer quantum gates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Hopf algebraic origin of Wick normal-ordering

A combinatorial formula of G.-C. Rota and J.A. Stein is taken to perform Wickre-ordering in quantum field theory. Wick’s theorem becomes a Hopf algebraic identity called Cliffordization. The combinatorial method relying on Hopf algebras is highly efficient in computations and yields closed algebraic expressions. AMS Subject Classifications 2000: 81R50; 16W30

متن کامل

Solutions to the quantum Yang–Baxter equation having certain Hopf algebras as their reduced FRT construction

Suppose that M is a finite-dimensional vector space over a field k and that R : M ⊗M −→M ⊗M is solution to the quantum Yang–Baxter equation(QYBE). The FRT construction [3] is a bialgebra A(R) associated with R in a natural way. There is a quotient of the FRT construction, referred to as the reduced FRT construction and denoted by Ã(R), which seems rather useful in computation [11]. The bialgebr...

متن کامل

Bicrossproduct approach to the Connes-Moscovici Hopf algebra

We give a rigorous proof that the (codimension one) Connes-Moscovici Hopf algebra HCM is isomorphic to a bicrossproduct Hopf algebra linked to a group factorisation of the diffeomorphism group Diff(R). We construct a second bicrossproduct UCM equipped with a nondegenerate dual pairing with HCM. We give a natural quotient Hopf algebra kλ[Heis] of HCM and Hopf subalgebra Uλ(heis) of UCM which aga...

متن کامل

Quantum Doubles From A Class Of Noncocommutative Weak Hopf Algebras

The concept of biperfect (noncocommutative) weak Hopf algebras is introduced and their properties are discussed. A new type of quasi-bicrossed products are constructed by means of weak Hopf skew-pairs of the weak Hopf algebras which are generalizations of the Hopf pairs introduced by Takeuchi. As a special case, the quantum double of a finite dimensional biperfect (noncocommutative) weak Hopf a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017